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ABSTRACT
In this paper, we propose a system for the automatic estimation
of the key of a music track using hidden Markov models. The
front-end of the system performs transient/noise reduction, esti-
mation of the tuning and then represents the track as a succession
of chroma vectors over time. The characteristics of the Major and
minor modes are learned by training two hidden Markov models
on a labeled database. 24 hidden Markov models corresponding to
the various keys are then derived from the two trained models. The
estimation of the key of a music track is then obtained by com-
puting the likelihood of its chroma sequence given each HMM.
The system is evaluated positively using a database of European
baroque, classical and romantic music. We compare the results
with the ones obtained using a cognitive-based approach. We also
compare the chroma-key profiles learned from the database to the
cognitive-based ones.

1. INTRODUCTION

Considering its numerous applications (search/query music data-
bases, playlists generation or automatic accompaniment), auto-
matic estimation of musical key (key-note and mode) or of chord
progression over time of a music track has received much atten-
tion in the recent years. Because symbolic transcriptions of music
tracks are not always available, and because automatic transcrip-
tion algorithms (audio to symbolic) are still limited and costly,
many systems attempts to extract the key or chord progression di-
rectly from the audio signal. Most existing algorithms therefore
start by a front-end which converts the signal frames to the fre-
quency domain (FFT or CQT [1]) and then map it to the chroma
domain [2] (or Pitch Class Profile [3]). Chroma/PCP vectors rep-
resent the intensities of the twelve semi-tones of the pitch classes
over time. Algorithms then try to find the key or chord progres-
sion that best explains the succession of extracted chroma vectors.
In order to estimate the key, Chew [4] proposes the Spiral Array
Model/Center of Effect Generator. Most other authors [5], [6],
[7], [8] use theoretical chroma/PCP profiles corresponding to the
various keys. These profiles are derived from the probe tone exper-
iment of Krumhansl & Schmukler [9] or from the modified version
proposed by Temperley [10]. These experiments aimed at describ-
ing the perceptual importance of each semi-tone in a key. The
result is a pitch distribution profile for each key. These profiles are
then converted by the authors to key-chroma profiles.

Polyphonic audio signal: However, when trying to estimate
the key from a music audio signal, a major difference with these
experiments is the work with polyphonic signal (several notes
played at the same time) and with audio signal (not only the
frequencies of the pitch notes are observed but also all their

harmonics; therefore high values exist in the chroma vector at
the fifth, third, ... intervals of the pitch notes). This problem has
been addressed by Gomez [5]. She proposes to take into account
the contribution of the harmonics of a note (by using a theoretical
spectral envelope) and the polyphony (by considering the three
main triads in each key) during the creation of the key-chroma
profiles. This problem has also been addressed by Izmirli [6] who
estimates directly the contribution of the harmonics of a note by
measuring it with a database of piano notes.

Key estimation: The systems compute chroma/PCP vectors on
a frame-based. The systems then try to find the most likely key
that explains the overall set of frames. An assumption is often
made about the existence of the key in the beginning of the track.
Therefore, only the first part (first 20s of the first movement) of the
track is considered. Several approaches are taken to go from the
frame level to the global key. Gomez [5] finds the key by choosing
the key-chroma profile which has the highest correlation coeffi-
cient with a global average chroma vector. Izmirli [6] computes at
each time a cumulated chroma-vector (average from the beginning
of the track) c(t); he then searches at each time the key-chroma
profile which has the highest correlation with c(t), assigns to this
key a score equal to the distance between the 1st and 2nd maxi-
mum correlation; and finally chose the key which has the maxi-
mum score over the first 20s.

When implementing such a key estimation system, one soon
notes that the choice of the parameters (choice between Krumhansl
or Temperley profile, number of considered harmonics, number of
considered triads, ...) and the choice of the key estimation algo-
rithm (type of distance, type of score, considered track duration)
influence a lot the recognition rate of key. In fact many assump-
tions are made in these systems (fixed spectral envelope of a note,
fixed polyphony, no modulation of the key) that do not necessar-
ily correspond to the reality of the audio signal corresponding to a
music track in a given key.

For these reasons, in this paper we study a system that models
the keys using a set of hidden Markov models trained directly on
the chroma representation. This choice allows us to avoid making
the above-mentioned assumptions.

The paper is organized as follows: in section 2.1, we present
the front-end of our system which extracts the chroma representa-
tion over time of a music track; in section 2.2, we present our key
estimation system based on hidden Markov modeling; in section
3, we evaluate this system with a database of 300 tracks and com-
pare the results with the ones obtained using a cognitive-based ap-
proach (combining [5] and [6] approaches). We then compare the
key-chroma profiles learned by the HMMs to the cognitive-based
ones.
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2. PROPOSED METHOD

Our key estimation system is represented in Figure 1. In the fol-
lowing we detail the various steps of it.
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Figure 1: Key estimation systems: based on cognitive models (thin
arrows) and on hidden Markov models (thick arrows).

2.1. Front-end: signal observation

2.1.1. Pre-processing

We first apply a set of pre-processing algorithms to the audio sig-
nal. In order to save computation time, the signal is first converted
to mono and down-sampled to 11.025 Hz.

A silence detectors (based on loudness and spectral flatness
measure) is applied in order to detect the actual beginning of the
music in the audio signal.

A simple sinusoidal analysis/re-synthesis (spectrum peak-pi-
cking and short-term partial tracking) is applied in order to reduce
transient and noise influence in the measures.

As in [11], the tuning of the track is then estimated. This is
necessary because the instruments used during the recording may
have used another tuning than 440 Hz and because possible trans-
coding of the audio media may have changed its tuning. We sup-
pose the tuning constant over the track duration. We test a set of
tunings between 427 Hz and 452 Hz (the quarter-tones below and
above A4). For each tuning t and for each frame m, we compute
a “modeling error” defined as the ratio between the energy of the
spectrum explained by the current tuning (sum of the energy at the
frequencies ft corresponding to the semi-tones pitches based on
the tuning t) and the total energy of the spectrum:

ε(t, m) = 1−
X

n

A(ft,n, m)/
X

f

(A(f, m) (1)

where A denotes the amplitude of the Fourier transform and ft,n

are the semi-tones pitches based on the tuning t:

ft,n = t · 2(n−69)/12 n ∈ [43, 44, . . . , 95] t ∈ [427, 452] (2)

The tuning is then chosen as the value t which minimizes the mod-
eling error over time. In Figure 2, we present the histogram of the
tunings estimated on the 300 tracks database we will used in our
experiments (see section 3.1). The signal is then re-sampled (us-
ing a polyphase filter implementation) in order to bring the tuning
back to 440 Hz. The rest of the system can now be based on a
tuning of 440 Hz.
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Figure 2: Histogram of the tunings estimated on the evaluation
database (see section 3.1).

2.1.2. Chroma representation

Shepard [12] proposes to represent the pitch as a two dimensional
structure: the tone height (octave number) and the chroma (pitch
class). Based on that, the chroma spectrum or Pitch Class Profile
(PCP) has been proposed in order to map the values of the Fourier
transform (or Constant-Q transform) frequencies to the 12 semi-
tones pitch classes C.

In our system, we first map the values of the Fourier transform
to a semi-tone pitch spectrum, smooth the corresponding channels
over time and then map the results to the semi-tone pitch class
spectrum (chroma spectrum).
Semi-tone pitch spectrum: The mapping function between the
frequencies fk of the Fourier transform and the semi-tone pitch
scale n (expressed in a midi-note scale) is defined as:

n(fk) = 12 log2

„
fk

440

«
+ 69 n ∈ R+ (3)

The computation of the semi-tone pitch spectrum is made us-
ing a set of filters Hn′ centered on the semi-tone pitch frequencies
n′ ∈ [43, 44, . . . , 95] (corresponding to the notes G2 to B6 or the
frequencies 98Hz to 1975 Hz). In order to increase the “pitch res-
olution”, we define a factor R ∈ N+ which fixes the number of
filters used to represent one semi-tone. The center of the filters are
now defined by n′ ∈ [43, 43 + 1

R
, 43 + 2

R
, . . . , 95]. Each filter is

defined by the function

Hn′(fk) =
1

2
tanh (π(1− 2x)) +

1

2
(4)

where x is the relative distance between the center of the filter n′

and the frequencies of the Fourier transform: x = R |n′ − n(fk)|.
The filters are equally spaced and symmetric in the logarithmic
semi-tone pitch scale, extend from n′−1 to n′+1 with a maximum
value at n′.

The values of the semi-tone pitch spectrum N(n′) are then
obtained by multipying the Fourier transform values A(fk) by the
set of filters Hn′ :

N(n′) =
X
fk

Hn′(fk)A(fk) (5)

Smoothing: The semi-tone pitch spectrum N(n′) is computed
for each frame m. The output signal of each filter N(n′, m) is
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then smoothed over time using median filtering. This provides a
reduction of transients and noise in these signals. Also, for the
rest of the process, only the filters centered on the exact semi-tone
pitches are considered (i.e. among the R filters representing one
semi-tone, we only consider the middle one; for example if R = 3,
we only keep n’=69 but not n’=68.666 and n’=69.333). We can
do this because the tuning is now guaranteed to be 440 Hz. This
process also allows a reduction of the influence of noise in the
computation of the chroma spectrum.
Semi-tone pitch class spectrum (chroma spectrum): The map-
ping function between the semi-tone pitches n and the semi-tone
pitch classes (chroma) c is defined as c(n) = mod (n, 12). The
mapping to the 12-chroma scale vector C(l) (pitch classes) is
achieved by adding the equivalent pitch classes

C(l) =
X

n′ so that c(n′)=l

N(n′) l ∈ [0, 12[ (6)

Parameters: The analysis is performed using Short Time Fou-
rier Transform with a window of type blackman, length 371.5ms
and 50% overlap. Because of frequency resolution limits (the
frequency distance between adjacent semi-tone pitches becomes
small in low frequency), we only consider frequencies above 100
Hz. The upper limit is set to 2000 Hz. The variable A(fk) in
(5) can represent either amplitude, energy, log-amplitude or sone-
converted values of the DFT. The results given in the following
were obtained using the sone-converted values, which has given
the best results in our case. The computation of the sone-converted
values is similar to the one used in [13]. The value of R is set to 3.

2.2. Key estimation

In the following we will compare the estimation of key based on
key-chroma profiles derived from Krumhansl/Temperley experi-
ments with a system based on hidden Markov models trained di-
rectly on chroma representations. We first start by presenting the
key-chroma profile method we will use in the experiment then we
present our system.

2.2.1. Key estimation based on cognitive models

We have tested several systems based on cognitive models. The
best results were obtained using a combination of [5] and [6].
Creation of key-chroma profiles: We use an approach similar
to Gomez [5]: the key profiles are created by extending the
Krumhansl & Schmukler (Temperley or Diatonic) pitch dis-
tribution profile to the polyphonic (several pitches) and audio
(several harmonics for each pitch) cases. For each key, we
consider the three main triads in this key: the tonic, dominant and
sub-dominant triads (for example in C Major: C-E-G, G-B-D,
F-A-C). The chroma vector corresponding to each single note
of a specific triad is computed by adding the contribution of its
harmonics h. The harmonic h is given a contribution of 0.6h−1.
Only the first 4 harmonics are considered. For a specific triad,
the chroma vectors corresponding to the three notes are added.
Finally for a specific key, the key-chroma vector is computed
by adding the three triad-chroma vectors. Each triad-chroma
vector is weighted by the value of the Krumhansl’s (Temperley or
Diatonic) profile at the position corresponding to the position of
the root of the triad in the key (for example 6 for the F-A-C triad
in C Major). The result is a 12 dimensions chroma profile vector
for each of the 24 keys: Ci i ∈ [1, 24]. In the following, we will

use the pitch distribution profile proposed in [6] (combination of
Temperley and Diatonic profile) which has given the best results
in our case.
Estimation of key: The most likely key of the track is estimated
using an approach similar to Izmirli [6]. The chroma vectors c(t)
are extracted on a frame basis. At each time t, we estimate the
key Ci that has the highest correlation with a cumulated-over-time
chroma-vector1. We attribute a score to this key proportional to
the distance between its correlation value and the correlation value
of the second most likely key. This score acts as a reliability coef-
ficient. The final key decision is chosen as the key with the maxi-
mum score cumulated over time. Only the first 20 seconds of the
tracks are considered.

2.2.2. Key estimation based on hidden Markov models

In the following we propose the use of hidden Markov models [14]
trained and evaluated directly on the temporal sequences c(t) of
chroma vectors.

In comparison with the above-mentioned approach, the advan-
tages are

1. it does not necessitate to make assumptions about the pres-
ence of harmonics of the pitch notes in the chroma repre-
sentation, or assumptions about specific polyphony since
they will be inherently learned from the training set;

2. it does not necessitate the choice of a specific pitch distri-
bution profile (Krumhansl, Temperley or Diatonic);

3. it allows to take into account possible modulation of key
over time (through the transition probabilities).
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Figure 3: HMM training for key estimation.

Training of key-chroma HMMs: We want to create a specific
HMM for each of the 24 possible keys (12 key-notes, 2 modes).

1 At time t, the cumulated-over-time chroma-vector is computed by
averaging the chroma vectors c(τ) since the beginning of the track:
1/t

Pt
τ=0 c(τ).
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However, because the number of instances in our database strongly
differs among the 24 keys, training directly the HMMs on the set of
items belonging to a specific key could lead to over-fitting (learn-
ing the track characteristics instead of the key characteristics). We
therefore start by training only two models, a Major and a minor
mode model, and then map the two trained models to the various
possible key-notes. The training process is depicted in Figure 3. It
consists in the following steps:

1. map the chroma-vectors of all the tracks of the training set
to a root-note of C (by using circular permutation of chroma
vectors);

2. train an HMM for the C Major (C minor) key by using all
the tracks in C Major mode (C minor mode);

3. construct the HMMs for the other Major (minor) keys by
mapping the Major (minor) HMM to the various key-notes
(Db, D, Eb, ...). This is done by circular permutation of the
mean vectors and covariance matrices of the state observa-
tion probability. 24 HMMs are obtained in this way from
the two trained HMMs.

The training of the HMMs is made using the Baum-Welsh algo-
rithm. We have tested various HMM configurations (number of
states, number of mixtures) 2 3.
Estimation of key: For a song with unknown key, we evaluate
the log-likelihood of its chroma-vector sequence given each of the
24 HMMs. This is done using the forward algorithm. The model
giving the maximum log-likelihood determines the key.

3. EVALUATION

3.1. Test set

The evaluation of our system is performed on a database of 302 Eu-
ropean baroque, classical and romantic music extracts: Bach (48),
Corelli (12), Handel (16), Telleman (17), Vivaldi(6), Beethoven
(33), Haydn (23), Mozart (33), Brahms (32), Chopin (29), Dvorak
(18), Schubert (23), Schuman (7). The pieces are for solo key-
board (piano, harpichord), chamber and orchestra music. No opera
or choir music has been considered in the present study. As in [6],
the database was derived from the NAXOS web radio service. The
ground-truth key (key-note and mode) was derived from the title
of the piece. Only the first movement of each piece, supposed to
correspond to the provided key, was used. Note that we had to
manually correct the annotation of part of the baroque pieces since
they were based on a tuning of A4=415Hz.

3.2. Evaluation method

For each track, we extract the chroma vectors of the first 20s as de-
scribed in section 2.1. We then compare the estimation of the key

2 Note that HMM has already been used in the context of chord pro-
gression estimation. The system proposed in [15] recognizes the chord
progression by decoding a single HMM in which each state represents a
specific chord. In our case, a specific key is represented by a specific HMM
and the meaning of its states remains unspecified. Our system recognizes
the key by finding the most likely HMM over 24 HMMs.

3 Also, the idea of chroma rotation has been used in the context of chord
progression estimation. [15] uses it after the training of its single HMM
in order to average the parameters of the state observation probabilities
(the chord models). Our process is different since we use it before the
training (in order to train only two HMMs) and after the training (in order
to construct the 24 HMMs). We do not perform averaging.
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Cog.-base approach 88.9 85.1 88.4 92.7 0.6 5.0 1.0 3.3 95.0
HMM S=3, M=1 diag 84.6 80.4 86.2 86.8 0.9 2.7 3.9 5.8 93.7
HMM S=6, M=1 diag 81.3 76.1 85.3 83.2 1.5 3.3 3.0 9.1 93.0
HMM S=12, M=1 diag 84.2 79.8 88.0 85.6 2.4 1.5 2.7 8.2 94.6
HMM S=3, M=3 diag 85.5 81.0 87.4 88.0 2.1 2.4 3.0 6.4 94.9
HMM S=6, M=3 diag 84.2 79.5 87.7 85.3 1.8 2.1 3.6 8.2 95.2
HMM S=12, M=3 diag 85.5 80.7 86.2 87.4 2.1 2.7 3.9 5.5 94.9
HMM S=12, M=3 full 62.7 52.5 66.0 59.0 2.1 1.5 16.5 13.4 86.0

Table 1: Recognition rate of key for the cognitive-based and HMM-
based approach.

using the cognitive-based (section 2.2.1) and HMM-based (sec-
tion 2.2.2) approaches. For the system based on HMMs, we have
performed a ten-folds cross-validation (each time the HMMs were
trained on 9 folds and evaluated on the remaining one). We indi-
cate the recognition rate of key, key-note alone and mode alone.
We also indicate the score used for the MIREX-2005 key estima-
tion contest4. This score uses the following weights: - 1 for correct
key estimation (CM → CM), - 0.5 for perfect fifth relationship be-
tween estimated and ground-truth key (CM → GM), - 0.3 if detec-
tion of relative Major/minor key (CM → Am), - 0.2 if detection of
parallel Major/minor key (CM → Cm).

3.3. Results

The results are indicate into Table 1. We have tested various con-
figurations of the HMMs: number of emitting states (S=3, 6, 12),
number of Gaussian distributions for each state (M=1, 3). Each
Gaussian is described by its 12-dimensions mean vector µs,m and
its covariance matrix Σs,m. We have considered independence be-
tween chroma values, so that Σs,m are diagonal matrices.

Compared to the cognitive-based approach (88.9% MIREX
score), the HMM-based approach leads in all cases to a lower
recognition rate (maximum of 85.5% MIREX score). The con-
fusion with the 5th up, relative and parallel Major/minor of the
key are larger than the ones obtained with the cognitive-based ap-
proach. This can be explained partly by the fact that - the tracks
used for the training of the models do not only contain the main key
but also neighboring keys - part of the tracks (especially for the ro-
mantic period: Brahms, Schuman) start in a neighboring key. The
last column of the table indicates the number of “not so bad recog-
nition” (correct recognition + recognition of neighboring keys).
This number is very similar for both cognitive and HMM-based
approaches (95%). This means that the number of gross errors is
similar in both cases. It is important to note that no a priori musical
knowledge has been introduced in the HMM-based approach.

Comparing the various configurations of the HMMs, we see
that increasing the number of Gaussian distributions for each state
(M) slightly increases the recognition rate, but increasing the num-
ber of emitting states (S) does not influence significantly the re-
sults. In the last row, we indicate the results obtained when con-
sidering dependence between the chroma values (full covariance

4http://www.music-ir.org/mirex2005/index.php/Audio and Symbolic Key
Finding
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matrix) for the case S=12 / M=3. This decreases significantly the
results.
Comparison between HMM-based and cognitive-based key-
chroma profiles: In Figure 4, we indicate the 12-dimensions mean
vector of the emitting states of the Major and minor mode HMMs.
For this, we have trained the two HMMs on the whole database in a
S=3 / M=1 configuration. We compare these vectors with the two
cognitive key-chroma profiles as computed according to section
2.2.1. For the Major mode, state 1 (S1) and 3 (S3) of the HMM
are pretty close to the cognitive key-chroma profile. For the minor
mode, the closest state of the HMM is S2 but it does not agree
with the cognitive profile on the importance of the 10th and 11th

pitch classes (A and Bb in C minor). This could correspond to the
presence in our database of other minor modes than the harmonic
one which is the one used in the Temperley/Diatonic profile.
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Figure 4: Comparison between learned and cognitive-based key-
chroma profiles for the Major and minor mode.

4. CONCLUSIONS

In this paper, we have proposed a system for the automatic esti-
mation of the key of a music track from the analysis of its audio
signal. The system is based on a front-end that extracts chroma
vectors over time and uses them as observations. The character-
istics of the Major and minor modes are learned by training two
hidden Markov models on a labeled database. 24 hidden Markov
models corresponding to the various keys are then derived from the
two trained models. The estimation of the key of a music track is
then obtained by computing the likelihood of its chroma sequence
given each HMM. The system is evaluated using a database of
European baroque, classical and romantic music. The results are
compared with the ones obtained using a cognitive-based approach
based on extensions of Krumhansl/Temperley pitch distribution
profiles to the audio/polyphonic case. The results obtained with
the HMM approach (85.5%) remain lower than the ones obtained
with the cognitive-based approach (88.9%) but the number of gross
errors is similar in both cases. This indicates that a system without
any a priori musical knowledge can learn the characteristics of the
keys from a labeled database. Comparing the chroma-key profiles
learned from the database to the cognitive-based ones gives fairly
good agreement for the Major mode, but differs at the 10th and
11th pitch classes for the minor mode. Future works will concen-
trate on improving the chroma representation and on testing the
training/evaluation on the whole track duration. We would also
like to test this method for modeling the characteristics of compo-
sition styles.
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