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ABSTRACT

In modern music genres like Pop, Rap, Hip-Hop or Techno many
songs are built in a way that a pool of small musical pieces, so
called loops, are used as building blocks. These loops are usually
one, two or four bars long and build the accompaniment for the
lead melody or singing voice.

Very often the accompanying loops can be heard solo in a song
at least once. This can be used as a-priori knowledge for removing
these loops from the mixture. In this paper an algorithm based on
granular resynthesis and spectral subtraction is presented which
makes use of this a-priori knowledge. The algorithm uses two dif-
ferent synthesis strategies and is capable of removing known loops
from mixtures even if the loop signal contained in the mixture sig-
nal is slightly different from the solo loop signal.

1. INTRODUCTION

In the field of musical studio productions and remix applications
there exists a high demand for unmixing the single tracks of mu-
sical pieces from each other and extracting the used loops, if there
are any. An example of a typical track scenario is given in Figure
1. For this scenario extracting the loops would result the loops A,
B and C.
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Figure 1: Typical simplified track scenario for modern music gen-
res.

Besides the techniques presented for blind source separation
so far, this paper presents a straightforward approach for unmixing
songs which are built up on a loop base like it is described above.
If a loop appears solo in the musical piece its characteristics can
be used as apriori knowledge to remove this solo part from the
following parts resulting in a residual part which is often a single
loop itself. From the scenario shown in figure 1, loop A could
be retrieved directly from bar one or bar two. Loop B could be
unmixed by removing two bars of loop A from the song’s bars
three and four. Loop C could be retrieved by removing the newly

unmixed loop B and one bar of loop A from the song’s bars five
and six.

A naiÌĹve implementation for this approach would be to
subtract an accompaniment-loop which has been played solo
before directly from the mix using the time signals. For this
implementation to be successful it would be necessary that the
accompaniment-loop is being looped in a sample-identical way.
Further the boundaries, especially the starting-sample of the
accompaniment-loop would have to be set in a sample-accurate
way. Additionally the gain of the loop would have to remain
absolutely constant.

These limitations cannot be held for professionally edited stu-
dio productions. In professional studio productions subsequently
added effects like reverb, equalizers, dynamics, and mastering re-
sult in phase and amplitude distortions. Thus the assumption of
sample accurate looping does not hold.

Further, many productions do not loop small wave-files di-
rectly, which would be classical looping, but repeat only the notes
for the loop continuously. Normally these loops are programmed
in a MIDI sequencer which sends control information to a synthe-
sizer. The synthesizers itself often produce sounds which are not
identical on the sample base. This applies especially to analogue-
synthesizers which are being recorded using A/D-converters after-
wards. Even digital synthesizers can have this behavior to make
the sound livelier.

The mentioned drawbacks which occur for a subtraction using
the time signals do not hold for the spectral properties of the tracks
to be unmixed. This fact is exploited by the presented algorithm.
The method is based on a granular resynthesis process together
with spectral subtraction. Although the algorithm does not oper-
ate directly in the time domain the nomenclature of this case is
used for this paper. This means that the music signal from which
the known loop is extracted is called mix, the known loop itself is
called subtrahend and the result of this unmixing is called residual.
As it is explained in the following in more detail, the spectral prop-
erties of the resynthesis signal are adapted using the information
which is gained by a granular analysis of the mix signal as well as
the subtrahend signal to be removed from the mix signal.

2. PREVIOUS WORK

The presented algorithm faces the problem of monophonic sound
unmixing with the technique of granular resynthesis. There are
several publications on both of the named topics.

Casey has presented a method on independent subspace ana-
lysis (ISA) for separating individual audio sources from a single-
channel mixture [1]. The method is based on the independent com-
ponent analysis (ICA) but can operate in scenarios where there are
less mixture observations than sources [2].
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Virtanen has presented a data-adaptive sound source separa-
tion system, which is able to extract meaningful sources from poly-
phonic real-world music signals [3]. He also has developed an
algorithm which transforms each source into a parameterized ver-
sion which is expressed as a convolution between a time-frequency
magnitude spectrogram and an onset vector [4].

Smaragdis has developed a method for the extraction of mul-
tiple sound sources from monophonic inputs which is an exten-
sion to the non-negative matrix factorization (NNMF). It is capable
of identifying components with temporal structure and extracting
multiple sound objects from a single channel auditory scene [5].

Since all algorithms developed for mono source separation fail
in certain situations the topic has not been solved by now and fur-
ther research needs to be performed.

The theory of granular synthesis was initially invented by Ga-
bor who proposed that any sound could be decomposed into small
acoustical grains [6, 7, 8]. Since then very much research on this
topic has been performed under different names. Today aliases
of the term “grain" are: “acoustic quantum", “gaboret", “gabor
atom", and “wavelet" to name only a few. A good overview is
given by Roads who has explained that the potential of granular
representations has yet to be fully explored [9]. Further use cases
and methods of granular synthesis have been named by Zölzer et
al. [10].

New approaches to signal analysis by Mallat show several
techniques that analytically combine granular synthesis with the
broad category of wavelet or atomic decompositions [11].

3. ALGORITHM

3.1. Preliminaries

Songs to be unmixed using the described algorithm need to fulfill
the following requirements:

• The tracks to be removed need to consist of mainly loops.

• The loop to be removed from a mix must appear solo at
least once throughout the song.

• The loops of one track must not change their spectral char-
acters heavily from one loop cycle to the next one. This
means that for example deep filter sweeps should not occur.

These assumptions easily hold for many songs from modern
music genres like Pop, Rap, Hip-Hop or Techno. Furthermore
these assumptions directly model almost every modern musical
studio production where different tracks and loops are composed
in a sequencer or tracker program. Although the presented
algorithm only performs the unmixing itself and no automatically
loop boundary detection, aligning the song in a sequencer or
tracker program will deliver these loop boundaries indirectly.

3.2. Granular Analysis

Let x(n) be the time signal of the mix-loop and s(n) be the time
signal of the subtrahend-loop. With equation (1) and (2) from both
signals grains are extracted with their anchors having a distance of
the hopsize N . The grains are windowed out of the signals using
a Hanning window w(n) of length W .

The grains themselves are denoted with xk(n) and sk(n) with
k being the grain index. After extracting the grains they are ana-
lyzed using a FFT of size L, yielding in the spectral blocks Xk(l)
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Figure 2: Extraction process of three analysis grains.

and Sk(l).

xk(n) = x(n + kN) · w(n) (1)
sk(n) = s(n + kN) · w(n) (2)

xk(n)
FFT−→ Xk(l) (3)

sk(n)
FFT−→ Sk(l) (4)

For further processing the spectral blocks Xk(l) and Sk(l) are

split into magnitude blocks X̂k(l), Ŝk(l) and phase blocks
ϕ

Xk(l),
ϕ

Sk(l). Figure 2 shows an example-extraction of three grains from
the subtrahend signal. For audio signals with a sample rate of 44.1
kHz the following parameters have been determined heuristically
to produce good analysis results:

• hopsize N = 1024 taps (23, 22 ms),

• window length W = 4096 taps (92, 88 ms),

• FFT size L = 4096 taps (92, 88 ms).

3.3. Basic Grain Synthesis

The information gained during the analysis process is now used for
setting up the resynthesis grains. The following equations compute

the magnitude R̂k(l) and
ϕ

Rk (l) of each residual grain:

R̂k(l) = X̂k(l)− Ŝk(l), (5)

ϕ

Rk(l) =
ϕ

Xk(l). (6)

By these two steps each residual grain’s spectral information is
now synthesized to:

Rk(l) = R̂k(l) · exp
“
j

ϕ

Rk(l)
”

(7)
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From this residual grain spectrum the grain itself can easily be
computed by an IFFT. It can then be used for the actual resyn-
thesis in the time domain which is performed by summing up all
synthesized residual grains.

The drawback with this basic grain synthesis process is that
the spectral character of neighboring grains could vary quite hea-
vily. This results in artifacts which make the grain-frequency i.e.
the frequency with which the grains are placed according to the
hopsize, quite audible. Further the subtrahend-loop must match
the mix-loop very well. Often this cannot easily be provided since
in almost every song there are slight variations from one loop to
the next one.

The advanced grain synthesis technique fixes this problem by
using more information of neighboring analysis grains to build the
spectrum for the resynthesis grains.

3.4. Advanced Grain Synthesis

The advanced grain synthesis technique takes the spectral proper-
ties of M neighboring analysis grains with a certain amount into
account. Therefore equation (5) is replaced by

R̂k(l) = X̂k(l)−
(M−1)/2X

m=−(M−1)/2

Ŝk+m(l) · g(m). (8)

The factors g(m) which are called shadow factors have the shape
of a window-function which is shown in Figure 3.

For audio signals with a sample rate of 44.1 kHz the shadow
factors’ total window size should be around 8192 taps (185, 76
ms), to achieve the best resynthesis quality. For a hopsize N of
1024 taps this means that seven analysis grains are taken into ac-
count for equation (8). This results in values for the shadow coef-
ficients which are shown in Figure 3.

The rest of the residual grains’ computation does not change,
compared to the basic method. This means that equations (6) and
(7) are also valid here.

Although the advanced grain synthesis is more robust against
spectral changes of the analyzed material it can add an amount of
blur to the synthesized grains. This especially occurs in percussive
sounds with dominant transients. In these cases the Basic Grain
Synthesis is preferred.
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Figure 3: A typical set of shadow factors.

3.5. Granular Resynthesis

Every grain Rk(l) is transformed from the spectral domain back
into the time domain by using an IFFT.

Rk(l)
IFFT−→ r̃k(n), (9)

Since we have manipulated the amplitudes of the contained
sinewaves it is not guaranteed that the grain still has the shape

No. Artist Song
1 Beastie Boys Hey Ladies
2 Depeche Mode ASN - Voices
3 Depeche Mode Any Second Now (RMX)
4 Electro Nation Woman Machine
5 Led Zeppelin Stairway to Heaven

Table 1: Demo songs used for evaluation.

of the Hanning window which we used for the initial extraction
process. To avoid block artifacts which may occur when the
grains are summed together another less invasive window v(n)
is applied to each grain. This window is mainly a rectangular
window which fades in and out on the first and last 10% of the
window size. This window should have the same length as the
Hanning window which was used for the analysis grain extraction.

rk(n) = r̃k(n) · v(n). (10)

The actual resynthesis of the output signal r(n) is performed by
summing up all edge-corrected grains rk(n) at their correct time
position:

r(n) =
X

k

rk (n− kN) . (11)

4. RESULTS

The algorithm performs a psycho-acoustically motivated sound
separation based on spectral properties. This makes it almost im-
possible to evaluate the algorithms quality in a purely deterministic
way. Therefore the algorithm’s quality was evaluated by perfor-
ming an expert listening test based on a well known mean opinion
score (MOS) criterion [12]. The five songs depicted in figure 4
were used as examples. The songs come from the genres Rap (No.
1), Pop (No. 2, No. 3) and Techno (No. 4). To show the limits of
the algorithm also one Ballad was processed (No. 5) which does
not hold the preliminaries named in section 3.1. The sound de-
mos together with more examples can be found at our institute’s
website1.

The MOS listening test has been performed with 25 musicians.
For each song they were presented the mix signal, the subtrahend
signal and the residual signal. For the unmixing the parameter set
proposed in section 3 was used. These settings focus more on a
good separation’s quality than on little artifacts. This is important
since these two quality aspects somewhat contradict each other.

The listeners had to judge two aspects of the sounds. The first
aspect was how much from the subtrahend remained in the residual
after unmixing, the second aspect was the presence of artifacts in
the residual i.e. noise, crackles, fading and musical tones.

For both tests a MOS ranging from one to five was used. The
separation’s quality was scaled from one meaning “Unsatisfactory
(Bad)" to five meaning “Excellent". The artifact impairment was
scaled from one meaning “Very Annoying (Objectionable)" to five
meaning “Imperceptible".

The results of the MOS test are depicted in figure 4. The over-
all MOS is 4.12 for the separation’s quality, which is better than

1www.nue.tu-berlin.de/wer/eisenberg/unmixing/
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good, and 3.38 for the artifact impairment. This means that arti-
facts are perceptible and slightly annoying. The separation’s qua-
lity is better than “Good" for all songs except No. 5. For No. 3
and No. 4 which contain dominant synthetic sounds it is almost
“Excellent".
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Figure 4: Mean values of the MOS test for the separation’s quality
(top) and artifact impairment (bottom).

The artifact impairment depends on the nature of the processed
material. For songs which sound very synthetic like No. 3 and No.
4 the sound artifacts occurring in the residual signal are almost
imperceptible. If the residual signal is a singing voice like in No.
1 and No. 2 the artifacts are just perceptible and slightly annoy-
ing. If there are little differences between the notes played in the
subtrahend and in the mix, like in the bass line of No. 2, these
cannot be removed completely and remain present in the residual,
although this is hardly audible.

Song No. 5 shows the limitations of the presented algorithm
by using a hand played loop as subtrahend which does not hold the
limitations mentioned in section 3.1. The song’s single notes vary
heavily in time and have different spectral characteristics. Fur-
thermore the residual signal is a singing voice which reduces the
listener’s tolerance for artifacts. After unmixing the residual sig-
nal contains annoying artifacts and the unmixing has almost a fair
overall quality.

5. FUTURE WORK

Besides the expert listening sessions performed for the presented
paper, a MOS test with more examples and more listeners is pre-

pared to illustrate the performance of the method.
The songs which the algorithm can unmix contain a high

amount of self-similarity by default. The next step for the
presented system will be to evaluate this self similarity and use it
to perform automatic boundary detection for loops. This would
result in less manual work for the user of the system since the
system would present reasonable suggestions.
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