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ABSTRACT

In this paper we propose an iterative audio restoration algorithm
based on an autoregressive (AR) model with modeling of the noise
pulse template to detect and restore Cell-phone electromagnetic in-
terference (EMI) patterns known as “GSM buzz”. The algorithm is
purely software based and does not require the aid of any hardware
providing side information. The only assumption is that individual
pulses are similar to scaled versions of the known template. With
this assumption, the algorithm can fully detect and restore noisy
interference signals in real time with almost no audible artifacts
and improve the signal to noise ratio by as much as 50dB.

1. INTRODUCTION

TDMA, CDMA and GSM are the three most common digital sig-
nals used by cellular service providers. These wireless transmis-
sion protocols send out strong electromagnetic pulses as control
or data signals during the registration process as well as during
receiving, transmitting, and hand-over procedures. Once transmit-
ted, interference pulses are received by audio amplifiers and line-
in circuits, which generates audible sound distortion in the form of
“GSM buzz” (217 Hz for full rate and 108 Hz for half rate) [1] [2].

Although audio products such as car stereos, telephones, recor-
ders, portable audio players, medical devices [3], and hearing aids
[4] all suffer from this kind of interference, such interference is of-
ten ignored. However, as the popularity of cellular phones grows,
the problem can no longer be overlooked, especially for high-end
consumer audio products and hearing aids that place emphasis on
the clarity of the sound.

Reducing Cell-phone transmission power, changing the trans-
mission protocol, equipping a telecoil [5], as well as shielding the
audio circuit can alleviate the problem. However, these solutions
cannot be implemented without changing the existing hardware
designs, which can often be very difficult and expensive. In ad-
dition, building an interference-free audio circuit that is immune
from the noises caused by electromagnetic pulses transmitted us-
ing various protocols (GSM, TDMA, and CDMA) is nearly impos-
sible. Further, interference can happen in any phase of the audio
transmission path, and once the audio waveform is interfered with,
there is no existing solution to filter out the noise without distorting
the original audio.

For many industry applications, internal subtractive noise can-
cellation where a regenerated noise pulse is fed back to the circuit
and subtracted from the signal provides an effective solution [6]
[7]. However, the design is only practical when the regenerated
noise pulse is exact. Generally this is achieved with the aid of a
hardware detector and a synchronized hardware clock generator.

Other solutions such as notch filter based restoration [2] typically
require frequency domain operation, produce a metallic sound, and
most importantly, rely on the fact that individual pulses arrive at
exact and regular intervals (217 Hz for full rate) without any de-
lays, which is rare when a mobile phone is trying to connect with
the base stations during call initialization and hand-over [8].

Many efficient real-time audio restoration algorithms are based
on autoregressive (AR) model, where a stationary random audio
signal is modeled as the output of an order P all-pole filter excited
by white noise. In the AR model, the output of a linear time in-
variant filter is restricted to a weighted sum of past output values
and a white noise input eAR(n) [9].

s(n) =

PX
i=1

a(i)s(n− i) + eAR(n)

A statistical signal processing approach based on the AR model
with prior knowledge of noise pulse template is applied to restore
Cell-phone interfered audio files. The approach intends to detect
and remove Cell-phone interfered noise pulses before the audio
data is played back on the speaker/headphone, or after the audio
files are recorded. The restoration process is extremely effective
and it is performed at the last stage of the audio circuit.

2. ANALYSIS OF NOISE PULSE AND THE
RESTORATION MODEL

When Cell-phone induced electromagnetic interference pulses, in
the form of a square wave, interfere with an audio signal, the pulses
are superimposed onto the original waveform. A typical corrupted,
Cell-phone interfered, audio signal x(n) appears as in Fig. 1. We
can see in Fig. 2 a typical noise pulse g(n) consists of two main
parts: a central pulse and a decaying tail. The central pulse is
caused by the electromagnetic (EM) excitation and the decaying
tail is due to the capacitance associated with the audio circuit.
Therefore, we consider an idealized model of the corrupted signal.
This model is used in section 3 to devise an detector. In section
4, an iterative restoration procedure loosely based on the idealized
model is provided.

x(n) = bg(n−m) + s(n) + e(n) (1)

Where:

• x(n) is the observed corrupted, Cell-phone interfered sig-
nal,

• g(n) is the known interference pattern template of Cell-
phone interference noise pulse,
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• b is a constant scaling factor to compensate for the ampli-
tude difference between noise and template,

• e(n) is a white output noise,

• s(n) is the original signal without interference.

We can see that if the exact start location m of the Cell-phone
interference template g(n) is known, and if we can also determine
the scaling factor b, we can then restore the original signal s(n).

Figure 1: x(n) - A typical section of cell-phone interfered audio.

Figure 2: g(n) - A typical cell-phone interference noise pulse.

3. DETECTION OF NOISE PULSES

Numerous detection methods can be used to determine the exact
location of the noise pulses, for example:

1. Hardware electromagnetic wave detector,

2. Threshold detection from signal,

3. Threshold detection from signal slope,

4. Cross correlation/matched filter detector,

5. Bayesian step detector [10] (chapter 5),

6. Autoregressive (AR) detector [9] (chapter 5),

7. The Bayesian template detector (see section 3.1)

For real-time applications, a hardware electromagnetic wave
detector can be an effective solution. For software implementa-
tions, threshold detection from signal amplitude can be a simple
and efficient method. Threshold detection from signal slope can
also be very effective.

3.1. The Bayesian Template Detector

To increase accuracy, the exact location of the central pulse can be
calculated with a Bayesian template detector model. The model
helps to predict the probability associated with each possible pulse
location. We can then detect the location of the noise pulse by
determining the value of m which produces the maximum prob-
ability, where m is the start of the noise pulse. Here we create

the Bayesian template detector model by simplifying Eq. (1) with
e(n) = 0:

x(n) = bg(n−m) + s(n) (2)

s(n) is assumed to be autoregressive:

s(n) =

PX
i=1

a(i)s(n− i) + eAR(n)

And we can write:
eAR = As

A is a ((N−P )×N ) matrix containing autoregressive coefficients
(see [9] for detailed description of A). We can then rewrite Eq. (2)
as:

eAR = A(x− bg)

Where g = [g(−m) g(−m+1) · · · g(N−1−m)]T. We assume
eAR is a zero mean independent Gaussian vector with variances σ2

1

, i.e. P (eAR(n)) = N(0, σ2
1). b is a Gaussian variable with mean

b′ and variance k σ2
1 , i.e. P (b) = N(b′, kσ2

1). k is generally a
large constant. We now obtain the equation for P (x|m, b):

P (x|m, b, σ1) ∝ PeAR(A(x−bg)) ∝ (2πσ2
1)−

N
2 ·e

- 1
2σ2

1
(eT

AReAR)

We wish to integrate out parameters b and σ1 in the detector to
obtain an equation in just variable m. We define u = Ax and v =
Ag. We can then define the probability model for the Bayesian
template detector:

P (m|x,g) =

Z
p(x|m, b, σ1)p(m)p(b)p(σ1)dbdσ1 (3)

Assigning uniform prior to p(m) and Jeffrey’s prior 1
σ1

for p(σ1)
in Eq. (3), σ1can be integrated out using the gamma integral [11],
b can be obtained using properties of Gaussian integrals, and after
rearranging, we have the general solution for the Bayesian tem-
plate detector:

P (m|x,g) ∝
1

k
q

vT v+ 1
k2

·

[
(uT v+ 1

k2 b′)2

(vT v+ 1
k2 )

-(uT u+
1

k2
b′)]-(

N -P -1
2 )

Empirically, k can be set to a large value and b′ is generally zero
due to the fact that b can be both positive or negative and no par-
ticular value is favored a priori.

3.2. Other Detection Methods

Other suitable detection methods include cross-correlation detector,
Bayesian step detector, and autoregressive (AR) detector, which
are summarized below: A cross-correlation detector correlates the
observed signal x(n) with the Cell-phone interference template
g(n). A Bayesian step detector was described in detail in [10].
For example, if we assume the observed signal x(i) has mean µ1

before change point m and mean µ2 after point m,

x(i) =

(
µ1 + ε(i) if i < m

µ2 + ε(i) otherwise
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The solution of the simplified Bayesian step detector is then:

p(m|x) ∝ [xTx− xTL(LTL)−1LTx]−
(N−M)

2q
det (LTL)

where L has two columns. The first column contains m rows of 1s
followed by N −m rows of 0s and the second column consists of
m rows of 0s followed by N − m rows of 1s. The autoregressive
(AR) detector was described in detail in [9] with the following
steps:

1. Calculate prediction error εn = xn−
PP

i=1 aixn−i, where
xn is the observed data, εn is a white noise input, ai is the
AR coefficient, and P is the AR model order,

2. If |εm| > rσe , where r is around 3 and σe is the standard
deviation of the white noise input, m is a possible location
for the start of the central pulse.

3.3. Comparison of the Different Detectors

For the Bayesian template detector and the Bayesian step detec-
tor, we plot the probability of noise pulse location according to
different possible locations m. For the AR detector, the errors εn

are plotted. On the other hand, for the cross-correlation detec-
tor, the aligned cross-correlation results are plotted. For the plots
described above, if the values are above a certain threshold, they
show indications of possible noise pulse locations. The maximum
value indicates the most probable noise pulse location. We can see
in Fig. 3 that the Bayesian template detector and the cross corre-
lation detector perform best in finding the noise pulse locations.
On the other hand, Fig. 10 shows the AR detector and the sim-
ple Bayesian step detector will try to detect both the rising and the
falling edges of the noise pulse. This sometimes causes confusion
and sacrifices the performance of the detector. Empirical results
show that the Bayesian template detector is most precise and ro-
bust for most scenarios owing to the fact that location m tends to
show up as a very sharp peak. In addition, the Bayesian template
detector can be very flexible in the sense that by setting g(n−m)
to zero, we can also determine the probability of the “no interfer-
ence" condition.

4. REMOVAL OF CELL-PHONE INTERFERED NOISE
PULSES WITH THE AR TEMPLATE INTERPOLATOR

Once the exact locations of the Cell-phone interference template
g(n) are known, say m′, we can attempt to remove the noise
pulses. We propose a sequential iterative AR template interpolator
that restores the noise pulses one by one. We first divide the ob-
served corrupted signal x(n) into overlapping frames. The frames
should be small enough so that only one pulse can be present at
a time. Then for each frame, find the central pulse location with
any of the detection methods mentioned above. We then restore
the central pulse location with the AR model and obtain the initial
estimate s0(n) of the clean original signal s(n). Subsequently, we
subtract s0(n) from the observed corrupted signal x(n) to deter-
mine the estimated interference signal r0(n). Further, we fit the
interference template g(n−m′) to this estimated interference sig-
nal r0(n) to determine the first scaling factor b1. Then we subtract
the scaled template b1g(n−m′) from the observed corrupted sig-
nal x(n) and interpolate over the central pulse location again to
re-estimate the original signal. The algorithm can then be iterated
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Figure 3: Detection results of Log of Bayesian template detector
and cross correlation detector.

by using this “re-estimated" signal to determine the scaling fac-
tor, which later determines another estimate of the original signal
and so on. The exact steps of the AR template interpolator are
described below:

1. LSAR interpolation over the central region of the noise
pulse, according to the formula:

si= LSAR(x(n)− big(n−m′)) (4)

where i starts from 0 and b0 = 0. Therefore LSAR ini-
tially restores the central pulse (see Fig. 2) location using
the AR model [9] (x(n) =

PP
i=1 a(i)x(n− i) + eAR(n))

with a low order (typical P = 20). We know from [9], for
example, the solution for the LSAR interpolator is

s0= −(AT
(i)A(i))

−1AT
(i)A−(i)x−(i)

.

See [9] for detailed descriptions of A, A(i), and A−(i).
x−(i)denotes known/ uncorrupted samples of the observed
signal x. This is the initial estimate of the original signal
s0(n) (see Fig. 4). Note that s0(n) is the result of an
LSAR interpolator with no prior knowledge of the noise
template g(n).

2. We introduce a new variable ri(n) which represents the es-
timated interference signal:

ri(n) ≡ x(n)− si(n)

3. Calculate the next estimate of the scaling factor b
i+1

; one
simple way to do this is to solve the following equation by
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minimizing e(n) within the central pulse location (see Fig.
6):

ri(n) = bi+1g(n−m′) + e(n) (5)

4. Finally we set i = i + 1 and iterate from 1.

We can see that s1(n) = LSAR(x(n)−b1g(n−m′)) where
the fitted interference pulse b1g(n−m) has n ∈ central pulse and
decaying tail. The first estimate of the original signal s1(n) is
shown in Fig. 5. We can also see from Fig. 4, 5 that the first
estimate of the original signal s1(n) is closer to the actual values
of the original signal s(n) than the initial estimate of the original
signal s0(n).
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Figure 4: Example implementation of Eq. (4) : Observed cor-
rupted signal x(n) (Dotted), Original signal s(n) (Gray), Initial
estimate of the original signal s0(n) (Dashed).
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Figure 5: Example implementation of Eq. (4) : Predicted inter-
ference pulse b1g(n−m′) (Dotted), Original signal s(n) (Gray),
First estimate of the original signal s1(n) (Dashed).
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Figure 6: Eq. (6) : Estimated interference signal r0(n) (Blue),
Fitted interference pulse b1g(n) (Dashed).

5. CONCLUSIONS AND RESULTS

Empirical results show the proposed Bayesian template detector is
very effective in detecting the interference pulses. Once the pulses
are properly detected, the proposed AR template interpolator can
typically improve the signal to noise ratio (SNR) of the observed
corrupted signal by more than 50dB (Table 1). The AR template in-
terpolator outperforms the general LSAR interpolator by as much
as a 25dB improvement in SNR. Subjective listening tests show
that the AR template interpolator restored signal displays no au-
dible artifact when compared to the original signal. The general
LSAR interpolator does not take into account the decaying tail.
We can see from Fig. 7, 11 that the general LSAR interpolator re-
stored signal has a “dip" at the end of the noise pulses. This con-
tributes to the audible artifacts associated with the general LSAR
interpolator. Audio samples of the results of the AR template in-
terpolator can be found at:

http://www-sigproc.eng.cam.ac.uk/~hl309

- Recorded on a full rate GSM interfered stereo
- All units in (dB) Type of audio signal
Restoration techniques Jazz Pop Speech
Noisy signal x(n) -17.0 -25.5 -22.8
LSAR interpolator 19.0 -3.4 1.6
AR template (1st iter) 37.8 18.3 22.8
AR template (5th iter) 38.5 19.5 23.5

Table 1: SNR performance of different interpolators.

For time-critical applications, we can use a threshold detector
or hardware electromagnetic detectors and restore the corrupted
signal with only one iteration of the AR template interpolator and
no overlap between frames. Then the dominating factor for the
complexity is the matrix inversion step in the AR template inter-
polator. The performance of the AR template interpolator is of
the same order as the general LSAR interpolator. If we use the
Levinson-Durbin recursion [12] for the matrix inversion steps we
arrive at a computational complexity of O(L2). For example, if
we need to restore a CD quality (44 kHz sampling rate), full rate
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GSM−BUZZ Restoration Results:
SNR (Noisy signal) = −17.0179

SNR (AR interpolator) = 10.0392
SNR (AR template) = 37.8478

Figure 7: Example of GSM buzz restoration of a corrupted trum-
pet sequence (Jazz) : x(n)(Dotted), s(n) (Gray), s0(n) (Dashed),
s1(n) (Black).

217 Hz GSM buzz interfered audio file, L is around 25 to 75 sam-
ples (25 samples are the length of the central pulse). We can see
that with such computational complexity, the algorithm can be effi-
ciently implemented on most microprocessors to run on real-time.

6. FUTURE WORK

The model for removal of Cell-phone interfered noise pulses can
be elaborated if we also want to recover the information from the
corrupted signal x(n) in the central pulse Fig. 2. By observing the
patterns of the central pulse and the decaying tail of the Cell-phone
interference noise pulse, we introduce a new variable y(n) to rep-
resent the interference noise. We can see from Fig. 8, y(n) can be
modeled as two exponential decays. We propose the Exponential
Decay Model for the observed corrupted signal x(n). We can then
estimate the parameters jointly with Bayesian motived techniques
such as Expectation Maximization or Gibbs Sampler [9][10].

Figure 8: Example of modeling the noise pulse y(n) as 2 exponen-
tial decays.

The Cell-phone interfered noise pulse restoration can be fur-
ther expanded to the Multi-Channel case, where N channels of
audio samples are observed. We can model the noise pulse of one
channel as a scaled version of the noise pulse of the other chan-
nel (see Fig. 9). We can now extend the AR template interpola-

tor to Multi-Channel [13]. In addition, we can iterate over all the
available channels with the Exponential Decay Model mentioned
earlier.

Figure 9: Example of a cell-phone interfered audio signal where
noise pulse of the left channel can be modeled as a scaled version
of the noise pulse of the right channel.
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Figure 10: Detection results of Bayesian step detector and AR de-
tector.
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GSM−BUZZ Restoration Results:
SNR (Noisy signal) = −25.549

SNR (AR interpolator) = −3.42135
SNR (AR template) = 18.3022

Figure 11: Example of GSM buzz restoration of a corrupted vo-
cal sequence (Pop): x(n) (Dotted), s(n) (Gray), s0(n) (Dashed),
s1(n) (Black).
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